pdfdpy

Release 0.1.0

Apr 19, 2020

Contents

1 PDF objects count
2 Navigate the document structure

3 API documentation

3.1 Listofmodules oL e e e e e e
31,1 parsermodule e
3.1.2 typesmodule ... L. e e e e e e e e e e e e e
3.1.3 exceptionsmodule e e e e e e e e

4 PDF 1.7 standard coverage

5 pdfdpy’s documentation

5.1 Quickexample e e e e
5.2 EXtracting teXt Or iMages« . v v v v v e
53 Inmstallation L e
54 Release NOtes oo oo it
5.5 Whythispackage e e e e
Python Module Index
Index

13

15
15
16
16
16
16

17

19

pdfdpy, Release 0.1.0

In this page are collected a bunch of examples that will show you the correct use of pdf4py.

Contents 1

pdfdpy, Release 0.1.0

2 Contents

CHAPTER 1

PDF objects count

Suppose we want to know how many PDF (in use) objects are in a PDF file. Let’s use the following snippet to find it

out.

>>>
>>>
>>>

import pdfépy.parser

fp = open('tests/pdfs/0000.pdf",
parser = pdfédpy.parser.Parser (fp)
all _xref_entries = list (parser.xreftable)
len(all_xref_entries)

"rb')

>>>
>>>
119
>>> for x in all_xref_entries[:10]:

print (x)

XrefInUseEntry
XrefInUseEntry
XrefInUseEntry
XrefInUseEntry
XrefInUseEntry
XrefInUseEntry
XrefInUseEntry
XrefInUseEntry
XrefInUseEntry
XrefInUseEntry

offset=15, object_number=1,
offset=525989,
offset=63, object_number=3,
offset=60167, object_number=4,
offset=285, object_number=5,
offset=38737, object_number=6,
offset=36091, object_number=7,
offset=21676, object_number=8,
offset=4102, object_number=9,

offset=5162, object_number=10,

generation_number=0)
object_number=2,
generation_number=0)

generation_number=0)

generation_number=0)

generation_number=0)

generation_number=0)
generation_number=0)
generation_number=0)

generation_number=0)

generation_number=0)

The special method __ifer__ called on xreftable returns a generator over the in-use and compressed objects references.
To know how many of them there are one must iterates over the generator until it is exhausted. This is what list does:

to collect all entries.

pdfdpy, Release 0.1.0

4 Chapter 1. PDF objects count

CHAPTER 2

Navigate the document structure

A PDF document is organized in a hierarchical structure made up of basic constructs such as dictionaries and refer-
ences. This snippet shows how one can navigate such a structure to access content that defines a particular page.

>>> from pdfdpy.parser import Parser

>>> fp = open('tests/pdfs/0000.pdf', 'rb')

>>> parser = Parser (fp)

>>> parser.trailer

{'Size': 120, 'Root': PDFReference (object_number=119, generation_number=0), 'Info':
—PDFReference (object_number=114, generation_number=0), 'ID': [PDFHexString(value=Db

—"CA49DFA7375R44BAA174802F645A8RA459"), PDFHexString (value=b
—"C49DFA7375R44BAA174802F645A8RA459") 1}

>>> root_ref = parser.trailer['Root']

>>> root_dict = parser.parse_reference (root_ref)

>>> root_dict

{'Type': 'Catalog', 'Pages': PDFReference (object_number=2, generation_number=0)}
>>> pages = parser.parse_reference (root_dict['Pages'])

>>> pages

{'Type': 'Pages', 'Count': 10, 'Kids': [PDFReference (object_number=23, generation_
—number=0), PDFReference (object_number=31, generation_number=0), PDFReference (object_
—number=49, generation_number=0), PDFReference (object_number=58, generation_
—number=0), PDFReference (object_number=64, generation_number=0), PDFReference (object_
—number=71, generation_number=0), PDFReference (object_number=87, generation_
—number=0), PDFReference (object_number=94, generation_number=0), PDFReference (object_

—number=104, generation_number=0), PDFReference (object_number=110, generation_
—number=0)]}

>>> page_1 = parser.parse_reference (pages['Kids'][0])

>>> page_1

{'Type': 'Page', 'Parent': PDFReference (object_number=2, generation_number=0),
—'Contents': PDFReference (object_number=24, generation_number=0), 'Resources':
—PDFReference (object_number=27, generation_number=0), 'MediaBox': [0, 0, 595.27¢6,
—841.89]}

>>> contents = parser.parse_reference (page_1['Contents'])
>>> contents

PDFStream(dictionary={'Length': PDFReference (object_number=25, generation_number=0),
'Filter': 'FlateDecode'} tream=<function Parser. stream reader W(ma](tr‘mmgﬂ@‘rtp_)
continues On next page
—reader at 0x7£43b1c19d90>) pag

pdfdpy, Release 0.1.0

(continued from previous page)

>>> data = contents.stream/()

>>> data

b'g\n/I0 Do\nQ\ng\n0.539 w\nBT\n/FO 11 Tf\n0 TL\n48 804.69 Td\n[(Proceedings 7th_
—Modelica Conference, Como, Italy)65(, Sep. 20-22, 2009)]TI\nET\nQ\ng\n0.539 w\nBT\n/
—F0 11 Tf\nO TL\n48 35.8 Td\n[(\xa9)18 (The Modelica)55 (Association,

—2009)]TI\nET\n0\ng\n0.539 w\nBT\n/FO 11 Tf\n0 TL\n289.388 35.8,

—Td\n[(251)]TI\nET\nQO\ng\n0.49 w\nBT\n/FO0 10 Tf\n0 TL\n435.066 37 Td\n[(DOI: 10.3384/
—ecp09430032)] TI\nET\nQ\n"'

In the last part can be seen a sequence of instructions that the rendering program has to execute to depict the page.
That sequence can be tokenized using pdf4py.parser.SequentialParser.

>>> from pdfdpy.parser import SequentialParser
>>> seq = SequentialParser (data)
>>> seq_iter = iter (seq)

>>> next (seqg_iter)

PDFOperator (value="q")

>>> next (seq_iter)

IIOI

>>> next (seqg_iter)

PDFOperator (value='Do"')

>>> next (seqg_iter)

PDFOperator (value='Q")

>>> next (seqg_iter)

PDFOperator (value="q'")

>>> next (seqg_iter)

0.539

The user that wishes to interpret these commands to extract text, images, or other higher level information must use
pdf4py to build a software module for that purpose.

6 Chapter 2. Navigate the document structure

CHAPTER 3

APl documentation

Functions and classes a user of pdf4py can use in its projects are collected into a bunch of modules listed below.
The most important one is parser module which defines the class Parser, a (almost) conforming PDF parser whose
coverage of PDF syntax rules is illustrated into PDF 1.7 standard coverage.

3.1 List of modules

3.1.1 parser module

class pdfipy.parser.Parser (source, password=None)
Parse a PDF document to retrieve PDF objects composing it.

The constructor takes as argument an object source, the sequence of bytes the PDF document is encoded into.
It can be of type bytes, bytearray or file pointer opened for reading in binary mode. Optionally, the second
argument is the password to be provided if the document is protected through encryption (if encrypted with
AESV3, the password is of type str, else bytes). For example,

>>> from pdfdpy.parser import Parser
>>> with open('path/to/file.pdf', 'rb') as fp:
>>> parser = Parser (fp)

Creates a new instance of Parser. The constructor reads the Cross Reference Table of the PDF document to
retrieve the list of PDF objects that are present and parsable in the document. The Cross Reference Table is then
available as attribute of the newly created Parser instance. For more information about the cross reference table,
see the XRefTable documentation.

After the instantiation, parser will have a XRefTable instance associated to the attribute xreftable. To retrieve
PDF objects pass entries in the table to the Parser.parse_reference method.

parse_reference
Parse and retrieve the PDF object xref_entry points to.

pdfdpy, Release 0.1.0

Notes

PDF objects are not parsed when an instance of Parser is being created. Instead, parsing occurs when this
method is called. To avoid that the same object is being parsed too many times, a LRU cache is being used
to keep in memory the last 256 parsed objects.

Parameters reference (XrefInUseEntry or XrefCompressedEntry or
PDFReference) — An entry in the XRefTable or a PDFReference object pointing to a
PDFObject within the file that has to be parsed.

Returns obj — The parsed PDF object.
Return type one of the types used to represent a PDF object.
Raises ValueError if reference object type is not a valid one.

class pdfdpy.parser.SequentialParser (source, **kwargs)
Implements a parser that is able to parse a PDF objects by scanning the input bytes sequence.

In other words, objects are extracted in the order they appear in the stream. For this reason it is used to parse
Content Streams.

Note that this class is not able to parse a complete PDF file since the process requires random access in the file to
retrieve information when required (for example to resolve a reference pointing at the Integer holding the length
of a stream). However, this class is used in defining the more powerful Parser.

The constructor that must be used by users takes a positional argument, source, being the source bytes stream.
It can by a byte, bytearray or a file pointer opened in binary mode. Other keyword arguments are used internally
in pdfdy, specifically by the Parser class.

parse_object (0bj_num: Optional[tuple] = None)
Parse the next PDF object from the token stream.

Parameters obj_num (tuple) — Tuple (seq, gen), seq and gen being the sequence and the
generation number of the object that is going to be parsed respectively. These values are
known when the parsing action is instructed after a XRefTable lookup. This parameter is
used only by the Parser class when the PDF is encrypted.

Returns obj — The parsed PDF object.
Return type one of the PDF types defined in module types

class pdfdpy.parser.XRefTable (previous: pdfidpy.parser. XRefTable, inuse_objects: dict,

free_objects: set, compressed_objects: Optional[dict] = None)
Implements the functionalities of a Cross Reference Table.

The Cross Reference Table (XRefTable) is the index of all the PDF objects in a PDF file. An object is uniquely
identified with a tuple (s, g) where s is the sequence number and g is the generation number. There are mainly
two types of entries in such table:

* XrefInUseEntry entries that represent objects that are part of the PDF document’s current structure, and

* tuple entries pointing at free objects, objects that are no longer used (for example, they have been elimi-
nated in a modification of the document).

* XrefCompressedEntry entries that are objects in use but stored in a compressed stream.

The listed three object types are to be used with the Parser.parse_reference class method to actually retrieve the
associated object.

There are two main ways to query a XRefTable instance:

* Iterating over the instance itself to get references to in use and compressed objects (but not free objects).

8 Chapter 3. API documentation

pdfdpy, Release 0.1.0

* Accessing a particular entry using the square brackets. A bidimentional index is used, representing the
sequence and generation numbers. This is because it implements the __getitem__ method that is used by
the parser to look up objects if required during the parsing process.

previous
Points to the XRefTable instance that is associated to the /Prev key in the trailer dictionary of the current
cross-reference table.

3.1.2 types module

Defines custom Python classes used transversely within the library.

Amongst these definition are found Python representations for PDF Objects (section 7.3 of the Standard), Lexer’s
output tokens, and XRefTable entry types.

class pdfipy.types.PDFDictDelimiter (value)
[Internal] Represents tokens << and >>.

value
Alias for field number O

class pdfipy.types.PDFHexString (value)
Represents the PDF Object ‘Hexadecimal string’.

An hexadecimal string is used mainly to encode a small quantity of binary data. The sequence of hexadecimal
digits are not decoded from ascii but stored directly as bytes in value attribute. This is so because you tipically
want to pass that value to the binascii.unhexlify function.

value
Alias for field number 0

class pdfdpy.types.PDFIndirectObject (object_number, generation_number, value)
Represents a PDF indirect object.

Attribute value contains the PDF object the indirect object structure wraps.

generation_number
Alias for field number 1

object_number
Alias for field number O

value
Alias for field number 2

class pdfipy.types.PDFKeyword (value)
[Internal] Represents a keyword in the PDF grammar, for example xref.

value
Alias for field number 0

class pdfipy.types.PDFLiteralString (value)
Represents the PDF Object ‘Literal string’.

A literal string is a sequence of ASCII characters. This is in theory, in practice there are so many PDF writers
that store non ASCII strings using this object type that is best to leave the associated value in bytes and pass to
the user the duty of choosing the right decoding scheme.

value
Alias for field number O

3.1. List of modules 9

pdfdpy, Release 0.1.0

class pdfipy.types.PDFOperator (value)
Represents an operator appearing in a ContentStream.

value
Alias for field number O

class pdfipy.types.PDFReference (object_number, generation_number)
Represent a PDF reference to a PDF Indirect object.

generation_number
Alias for field number 1

object_number
Alias for field number O

class pdfipy.types.PDFSingleton (value)
[Internal] Represents a singleton in the PDF greammar, for example {.

value
Alias for field number O

class pdfipy.types.PDFStream (dictionary, stream)
Represents a PDF stream.

The attribute dictionary points to the stream dictionary. The attribute stream is a callable object requiring no
arguments that when called returns the stream content bytes. The content is read from the source only when
stream is called, following the lazy loading philosophy around which pdf4py is built around.

dictionary
Alias for field number 0

stream
Alias for field number 1

class pdfipy.types.PDFStreamReader (value)
[Internal] A wrapper around a function f (1length) returned by Lexer to Parser when parsing a PDF stream
object.*

value
Alias for field number 0

class pdfipy.types.XrefCompressedEntry (object_number, objstm_number, index)
Represents an entry in the Cross Reference Table pointing to an object that currently contributes to the final PDF
render, but stored in a compressed object stream to reduce the size of the PDF file.

index
Alias for field number 2

object_number
Alias for field number O

objstm_number
Alias for field number 1

class pdfipy.types.XrefInUseEntry (offset, object_number, generation_number)
Represents an entry in the Cross Reference Table pointing to an object that currently contributes to the final PDF
render (as opposite to removed, i.e. free, objects).

generation_number
Alias for field number 2

object_number
Alias for field number 1

10 Chapter 3. API documentation

pdfdpy, Release 0.1.0

offset
Alias for field number 0

3.1.3 exceptions module
exception pdf4py.exceptions.PDFGenericError
Raised when a generic error happens.

exception pdfipy.exceptions.PDFLexicalError
Raised when a lexical error is encountered during input scanning.

exception pdf4py.exceptions.PDFSyntaxError
Raised when the parsed PDF does not conform to syntax rules.

exception pdfipy.exceptions.PDFUnsupportedError
Raised when the parser does not support a PDF feature.

exception pdfi4py.exceptions.PDFWrongPasswordError
Raised when the user gives in input a wrong password.

3.1. List of modules

11

pdfdpy, Release 0.1.0

12 Chapter 3. API documentation

CHAPTER 4

PDF 1.7 standard coverage

In this file the progress in implementing all the features in the PDF 1.7 standard is tracked. Chapters 1 to 6 of the
standard are devoted to give a general introduction to the standard whereas Chapter 7 is where the PDF syntax is
defined. It follows that the best way to keep track of the progress is to specify for each section whether the illustrated
features have been implemented or not. As the development goes on, the various sections describing features that have
been supported will be marked with an check symbol (v') in the following table. Moreover, the tilde symbol (~) means
almost every aspect is supported or that the implementation seems to work but more testing is necessary. Finally, the
cross symbol () informs that there is no support at this stage for the associated feature.

Section | Description Status

7.2 Lexical conventions v

7.3 Objects ~

7.3.2 Boolean objects v

7.3.3 Numeric objects v

734 String objects v

7.3.5 Name objects v

7.3.6 Array objects v

7.3.7 Dictionary objects v

7.3.8 Stream objects ~ (F parameter not supported yet)
7.3.9 Null object v

7.3.10 Indirect objects v

7.4 Filters ~

742 ASCIIHexDecode ~ (Testing is missing still)
743 ASCII85Decode v

7.4.4 LZWDecode

744 FlateDecode ~ (Predictors must still be tested)
7.4.5 RunLengthDecode v

7.4.6 CCITTFaxDecode ~ (data returned ‘as is’)
7.4.7 JBIG2Decode ~ (data returned ‘as is’)
7.4.8 DCTDecode ~ (data returned ‘as is’)
7.4.9 JPXDecode ~ (data returned ‘as is’)

Continued on next page

13

http://wwwimages.adobe.com/www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf

pdfdpy, Release 0.1.0

Table 1 — continued from previous page

Section | Description Status
7.4.10 Crypt v
7.5 File Structure ~
7.5.2 File header v
7.5.4 Cross Reference Table v
7.5.5 File trailer v
7.5.6 Incremental updates v
7.5.7 Object streams v
7.5.8 Cross Reference Streams v
7.6 Encryption ~ (no File Specs and Public Key Crypto)
7.6.1 General v
7.6.2 General Encryption Algorithm v
7.6.3 Standard Security Handler ~ (permission bits ignored)
7.6.4 Public Key Security Handler

7.6.5 Crypt Filters v
7.7 Document Structure

7.7.2 Document Catalog

7.1.3 Page Tree

7.8 Content Streams and Resources

7.8.2 Content Streams

7.8.3 Resource Dictionaries

7.9 Common Data Structures

7.9.2 String Object Types

7.9.3 Text Streams

7.9.4 Dates

7.9.5 Rectangles

7.9.6 Name Trees

7.9.7 Number Trees

7.10 Functions

7.10.1 General

7.10.1 Resource Dictionaries

7.10.2 Type 0 (Sampled)

7.10.3 Type 2 (Exponential Interp.)

7.11 File Specification

7.11.2 File Specification Strings

7.11.3 File Specification Dictionaries

7.11.4 Embedded File Streams

7.11.5 URL Specifications

7.11.6 Collection Items

7.11.7 Maintenance of File Spec.

7.12 Extensions Dictionary

7.12.2 Developer Extensions Dictionary
7.12.3 BaseVersion

7.12.4 ExtensionLevel

Subsequent chapters describe higher level aspects that are built on top of the PDF syntax and elementary objects. As
of now there is no support for those features, as explained in the landing page of the documentation.

In addition, the AESV3 encryption method specified in the PDF 1.7 Extension 3 document has been implemented.

14

Chapter 4. PDF 1.7 standard coverage

https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/adobe_supplement_iso32000.pdf

CHAPTER B

pdf4py’s documentation

The package pdf4py allows the user to analyze a PDF file at a very low level and in a very flexible way by giving
access to its atomic components, the PDF objects. All through a very simple API that can be used to build higher
level functionalities (e.g. text and/or image extraction). In particular, it defines the class Parser that reads the Cross
Reference Table of a PDF document and uses its entries to give the user the ability to locate PDF objects within the
file and parse them into suitable Python objects.

DISCLAIMER: this package hasn’t reached a stable version (>= 1.0.0) yet. Although the parser API is quite simple
it may change suddenly from one release to the next one. All breaking changes will be properly notified in the release
notes.

5.1 Quick example

Here is a quick demonstration on how to use pdf4py. For more examples, look at the Tutorials and examples page.

>>> from pdfépy.parser import Parser
>>> fp = open('tests/pdfs/0000.pdf"', 'rb'")
>>> parser = Parser (fp)
>>> info_ref = parser.trailer['Info']
>>> print (info_ref)
PDFReference (object_number=114, generation_number=0)
>>> info = parser.parse_reference (info_ref)
>>> print (info)
{'Creator': PDFLiteralString(value=b'PaperCept Conference Management System'),
, 'Producer': PDFLiteralString(value=b'PDF1lib+PDI 7.0.3 (Perl 5.8.0/Linux)")}
>>> creator = info['Creator'].value.decode ('utf8")

(continues on next page)

15

https://travis-ci.org/Halolegend94/pdf4py
https://pdf4py.readthedocs.io/en/latest/?badge=latest
https://pypi.org/project/pdf4py/
https://pypi.org/project/pdf4py/

pdfdpy, Release 0.1.0

(continued from previous page)

>>> print (creator)
PaperCept Conference Management System

5.2 Extracting text or images

Extracting text from a PDF and other higher level analysis tasks are not natively supported as of now because of two
reasons:

* their complexity is not trivial and would require a not indifferent amount of work which now I prefer investing
into developing a complete and reliable parser;

* they are conceptually different tasks from PDF parsing, since the PDF does not define the concept of document
as a sequence of paragraphs, images, and other objects that can be normally considered confent.

Therefore, they require a separate implementation built on top of pdf4py. In don’t exclude that in future these func-
tionalities will be made available as modules in this package, but I am not planning to do it anytime soon.

5.3 Installation

You can install pdf4py using pip:

’python3 -m pip install pdfdpy

or download the latest release from GitHub and use the setup.py script.

5.4 Release Notes

You can find the list of all releases with associated notes on GitHub.

5.5 Why this package

One day at work I was asked to analyze some PDF files. To my surprise I had discovered that there was not an
established Python module to easily parse a PDF document. In order to understand why I delved into the PDF 1.7
specification: since that moment I've got interested more and more in the inner workings of one of the most important
and ubiquitous file format. And what’s a better way to understand the PDF than writing a parser for it?

16 Chapter 5. pdf4py’s documentation

https://github.com/Halolegend94/pdf4py/releases

Python Module Index

P

pdfidpy.exceptions, 11
pdfdpy.parser, 7
pdfidpy.types,9

17

pdfdpy, Release 0.1.0

18 Python Module Index

Index

D

dictionary (pdfipy.types.PDFStream attribute), 10

G

generation_number
(pdfdpy.types.PDFIndirectObject attribute), 9

generation_number (pdf4py.types.PDFReference
attribute), 10

generation_number (pdfipy.types XreflnUseEntry
attribute), 10

index (pdfdpy.types. XrefCompressedEntry attribute), 10

O

object_number (pdfépy.types.PDFIndirectObject at-
tribute), 9

object_number (pdfdpy.types.PDFReference at-
tribute), 10

object_number (pdfdpy.types.XrefCompressedEntry
attribute), 10

object_number (pdf4py.types.XrefInUseEntry
tribute), 10

objstm_number (pdfépy.types.XrefCompressedEntry
attribute), 10

offset (pdfdpy.types.XrefInUseEntry attribute), 10

P

parse_object ()
method), 8

parse_reference (pdfdpy.parser.Parser attribute), 7

Parser (class in pdfidpy.parser), 7

pdfipy.exceptions (module), 11

pdfidpy.parser (module), 7

pdfidpy.types (module), 9

PDFDictDelimiter (class in pdfdpy.types), 9

PDFGenericError, 11

PDFHexString (class in pdfdpy.types), 9

PDFIndirectObject (class in pdfipy.types), 9

at-

(pdfdpy.parser.Sequential Parser

PDFKeyword (class in pdf4py.types), 9
PDFLexicalError, 11
PDFLiteralString (class in pdfdpy.types), 9
PDFOperator (class in pdfidpy.types), 9
PDFReference (class in pdfdpy.types), 10
PDFSingleton (class in pdfdpy.types), 10
PDFStream (class in pdfipy.types), 10
PDFStreamReader (class in pdfdpy.types), 10
PDFSyntaxError, 11
PDFUnsupportedError, 11
PDFWrongPasswordError, 11

previous (pdfdpy.parser.XRefTable attribute), 9

S

SequentialParser (class in pdfdpy.parser), 8
stream (pdfipy.types.PDF Stream attribute), 10

\Y

value (pdfdpy.types.PDF DictDelimiter attribute), 9
value (pdfdpy.types.PDFHexString attribute), 9
value (pdfdpy.types.PDFIndirectObject attribute), 9
value (pdfdpy.types.PDF Keyword attribute), 9
value (pdfédpy.types.PDF LiteralString attribute), 9
value (pdfdpy.types.PDF Operator attribute), 10
value (pdfdpy.types.PDFSingleton attribute), 10
value (pdf4py.types.PDFStreamReader attribute), 10

X

XrefCompressedEntry (class in pdfdpy.types), 10
XrefInUseEntry (class in pdf4py.types), 10
XRefTable (class in pdf4py.parser), 8

19

	PDF objects count
	Navigate the document structure
	API documentation
	List of modules
	parser module
	types module
	exceptions module

	PDF 1.7 standard coverage
	pdf4py’s documentation
	Quick example
	Extracting text or images
	Installation
	Release Notes
	Why this package

	Python Module Index
	Index

